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Collection of n letters.

b

Vector Spaces

2
5

)

—

Manifolds Distributions on a space ©.

©

D
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Transformations of objects. Groups, arise!

Permutations on n letters. This preserves the distinctness of elements of the set.
Given two permutations you can apply one after the other.

g
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Transformations of objects. Groups, arise!

Permutations on n letters. This preserves the distinctness of elements of the set.
Given two permutations you can apply one after the other.
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Transformations of objects. Groups, arise!

Permutations on n letters. This preserves the distinctness of elements of the set.
Given two permutations you can apply one after the other.

pOU %UopM

The identity permutation:

IREER

g
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Transformations of objects. Groups, arise!

Permutations on n letters. This preserves the distinctness of elements of the set.
Given two permutations you can apply one after the other.

P

The identity permutation:

The resulting object is the symmetric group
e l l \L l l on n letters, denoted by S,, or Sym,,.
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Invertible linear maps also preserve the linear structure of vectors. It is a group.
A(v+w) = Av + Aw,
A(av) = aAv

Also denoted by GL(n,R) if V' is an n-dimensional real vector space, i.e. V = R".

GL(V) = {A V= V' JATE exists} .
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Invertible linear maps also preserve the linear structure of vectors. It is a group.

- ] Av+w)=Av+ Aw, | .
GL(V) = {A V= V' Alov) = adv A EXIStS} .

Also denoted by GL(n,R) if V' is an n-dimensional real vector space, i.e. V = R".

If preserve extra structure such as inner product (v, w) = v w then obtain a subgroup

SO(n,R) ={A € GL(n,R)|[(Av, Aw) = (v, w),det(A4) > 0}.

Learning Distributions using Lie Groups

August 2025



Invertible linear maps also preserve the linear structure of vectors. It is a group.

A(v+w) = Av + Aw,
A(av) = aAv

Also denoted by GL(n,R) if V' is an n-dimensional real vector space, i.e. V = R".

GL(V) = {A V= V' JATE exists} .

If preserve extra structure such as inner product (v, w) = v w then obtain a subgroup

SO(n,R) ={A € GL(n,R)|[(Av, Aw) = (v, w),det(A4) > 0}.

The upper triangular o ‘ *
matrices are also closed B_ 0 *
under multiplication and 0 0 *
inversion 0 0 - 0 x
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Invertible linear maps also preserve the linear structure of vectors. It is a group.

A(v+w) = Av + Aw,
A(av) = aAv

Also denoted by GL(n,R) if V' is an n-dimensional real vector space, i.e. V = R".

GL(V) = {A V= V' JATE exists} .

If preserve extra structure such as inner product (v, w) = v w then obtain a subgroup

SO(n,R) ={A € GL(n,R)|[(Av, Aw) = (v, w),det(A4) > 0}.

The upper triangular o ‘ *

matrices are also closed B— U * What does this set of
under multiplication and 0 0 % matrices preserve?
inversion 00 - 0 x
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A group is a set G together with a binary operation

*+: G xG—Gd
(g,h) —> gxh

satisfying
© (associativity) (g* h) xk = g« (h* k) for every g, h, k € G.
@ (existence of identity) There is an e € G such that exg = g and g*xe = g for every g € G.
@ (existence of inverses) For every g € GG there exists an h € G such that gxh =hx g =e.
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A group is a set G together with a binary operation

*+: G xG—Gd
(g,h) —> gxh

satisfying
© (associativity) (g* h) xk = g« (h* k) for every g, h, k € G.
@ (existence of identity) There is an e € G such that exg = g and g*xe = g for every g € G.
@ (existence of inverses) For every g € GG there exists an h € G such that gxh =hx g =e.

Additive symbol ‘¥ = ‘4 for Abelian groups: a + b= b+ a.
Multiplicative notation mostly omits the % symbol, and ab # ba can happen (think matrices).
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A group is a set G together with a binary operation
x:GxG— G
(9:h) —gxh
satisfying
© (associativity) (g* h) xk = g« (h* k) for every g, h, k € G.

@ (existence of identity) There is an e € G such that exg = g and g*xe = g for every g € G.
@ (existence of inverses) For every g € GG there exists an h € G such that gxh =hx g =e.

Additive symbol ‘¥ = ‘4 for Abelian groups: a + b= b+ a.
Multiplicative notation mostly omits the % symbol, and ab # ba can happen (think matrices).

The closure property of the group operation is simply that axb € G if a,b € G.
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Examples of Groups

@ (V,+). Any vector space V with vector addition as the binary operation.

Learning Distributions using Lie Groups August 2025



Examples of Groups

@ (V,+). Any vector space V with vector addition as the binary operation.
@ (R-o, x). Positive real numbers R~ under multiplication.
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Examples of Groups

@ (V,+). Any vector space V with vector addition as the binary operation.
@ (R-o, x). Positive real numbers R~ under multiplication.

@ GL(n,R). Invertible n x n matrices, under matrix multiplication.
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Examples of Groups

@ (V,+). Any vector space V with vector addition as the binary operation.

@ (R-o, x). Positive real numbers R~ under multiplication.

@ GL(n,R). Invertible n x n matrices, under matrix multiplication.

QO Aff(n,R) = GL(n,R) x R™. The Affine group, consisting of pairs (A, b) where the group
multiplication is (A1, b1)(Az, b)) = (A1 A2, Abs + by).
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Examples of Groups

@ (V,+). Any vector space V with vector addition as the binary operation.

@ (R-o, x). Positive real numbers R~ under multiplication.

@ GL(n,R). Invertible n x n matrices, under matrix multiplication.

QO Aff(n,R) = GL(n,R) x R™. The Affine group, consisting of pairs (A, b) where the group
multiplication is (A1, b1)(Az, b)) = (A1 A2, Abs + by).
Another way to realize this group is as a subgroup of (n + 1) x (n + 1) matrices.

A; by As by . A1As by + Aibs and A b 71_ Al —A-lp
o" 1/\o" 1) \of 1 o" 1/ —~\o" 1
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Examples of Groups

@ (V,+). Any vector space V with vector addition as the binary operation.

@ (R-o, x). Positive real numbers R~ under multiplication.

@ GL(n,R). Invertible n x n matrices, under matrix multiplication.

QO Aff(n,R) = GL(n,R) x R™. The Affine group, consisting of pairs (A, b) where the group
multiplication is (A1, b1)(Az, b)) = (A1 A2, Abs + by).
Another way to realize this group is as a subgroup of (n + 1) x (n + 1) matrices.

A; by As by . A1As by + Aibs and A b 71_ Al —A-lp
o" 1/\o" 1) \of 1 o" 1/ —~\o" 1

A group representation is a group homomorphism 7 : G — GL(V), (i.e. w(gh) = 7(g)w(h))
so that any element g can be seen as a matrix 7(g).
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Examples of Groups

@ (V,+). Any vector space V with vector addition as the binary operation.

@ (R-o, x). Positive real numbers R~ under multiplication.

@ GL(n,R). Invertible n x n matrices, under matrix multiplication.

QO Aff(n,R) = GL(n,R) x R™. The Affine group, consisting of pairs (A, b) where the group
multiplication is (A1, b1)(Az, b)) = (A1 A2, Abs + by).
Another way to realize this group is as a subgroup of (n + 1) x (n + 1) matrices.

A; by As by . A1As by + Aibs and A b 71_ Al —A-lp
o" 1/\o" 1) \of 1 o" 1/ —~\o" 1

A group representation is a group homomorphism 7 : G — GL(V), (i.e. w(gh) = 7(g)w(h))
so that any element g can be seen as a matrix 7(g).

Elements of the symmetric group S3 can be represented as matrices: 7((12)(3)) = (gé
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A group G acts on a set X if there is a map
GEx X =X

satisfying
QO (gh) - z=g-(h-z)forall gyh € Gand xz € X
Q c-xz ==z forall x € X where e € G is the identity.
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A group G acts on a set X if there is a map

S GEx X > X
satisfying

QO (gh) - z=g-(h-z)forall gyh € Gand xz € X
Q c-xz ==z forall x € X where e € G is the identity.

Every group acts on itself with the group multiplication. In other words X = G and g -z = gx.
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A group G acts on a set X if there is a map

o G@x X =X

satisfying
QO (gh) - z=g-(h-z)forall gyh € Gand xz € X
Q c-xz ==z forall x € X where e € G is the identity.

Every group acts on itself with the group multiplication. In other words X = G and g -z = gx.
Another example, (A,b) € Aff(n,R) acting on x € R™ by

(A,b) -x = Ax + b.
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A bit on manifolds

Manifolds are geometric objects
which have local coordinates via
charts p : U CR™ — M.
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Manifolds are geometric objects
which have local coordinates via
charts p : U CR™ — M.

Differential of maps between two manifolds are linear
maps between their tangent spaces.
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A bit on manifolds

Manifolds are geometric objects
which have local coordinates via
charts p : U CR™ — M.

Differential of maps between two manifolds are linear
maps between their tangent spaces. So if N C R—as
TN = R for any point p—we get a linear map
dfp : TpM — R, i.e. a linear functional: df, € Ty M.
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A bit on manifolds

Manifolds are geometric objects
which have local coordinates via
charts p : U CR™ — M.

Differential of maps between two manifolds are linear
maps between their tangent spaces. So if N C R—as
TN = R for any point p—we get a linear map

¢ dfp : TpM — R, i.e. a linear functional: df, € Ty M.
If we have two maps F': M — N and G : N — P then the chain rule is

d(G O F)p = dGF(p)de

On the right hand side, we have a composition of two linear maps, written multiplicatively.

August 2025
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Manifolds of distributions: more than one chart is possible

(A1;A2)

The 1-d Gaussian distributions form a two
dimensional manifold with a single chart. But
there can be more than one parametrization.
One with natural parameters

(A, A) — g() oc e Mz’

or on the other hand, the expectations of z

and 2 are also enough to characterize
7(17777,)2
202

q(z) = \/217“,6

The Euclidean inner product w.r.t. (A1, A2) or w.r.t. (uu1, ) = (m, o +m?) gives different

angles between tangent vectors to 75 Q.
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Lie groups: Multiplication connects tangent planes.

Lie groups are groups which are also manifolds.
Multiplication and inversion maps are smooth.
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Lie groups: Multiplication connects tangent planes.

Lie groups are groups which are also manifolds.
Multiplication and inversion maps are smooth.

For every g € G left and right multiplication maps defined by
Ly(z) = gz, Ry(x) = xg send e to g.
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Lie groups: Multiplication connects tangent planes.

Lie groups are groups which are also manifolds.
Multiplication and inversion maps are smooth.

For every g € G left and right multiplication maps defined by
Ly(z) = gz, Ry(x) = xg send e to g.
Their differentials connect the tangent spaces g and T,G.
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Lie groups: Multiplication connects tangent planes.

Lie groups are groups which are also manifolds.
Multiplication and inversion maps are smooth.

For every g € G left and right multiplication maps defined by
Ly(z) = gz, Ry(x) = xg send e to g.
Their differentials connect the tangent spaces g and T,G.

If learning on a general man-

ifold, then vectors at different
points are in totally different vec-
tor spaces. How to add them,
like in momentum accumulation?
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Lie groups: Multiplication connects tangent planes.

Lie groups are groups which are also manifolds.
Multiplication and inversion maps are smooth.

For every g € G left and right multiplication maps defined by
Ly(z) = gz, Ry(x) = xg send e to g.
Their differentials connect the tangent spaces g and T,G.

If learning on a general man-

ifold, then vectors at different
points are in totally different vec-
tor spaces. How to add them,
like in momentum accumulation?

T.G=g

Ry-10Lg: e e, its differential is the adjoint map Ad, : g — g. Identity for commutative
groups.
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Pushforwards and Pullbacks

Given F': M — N, a map between

manifolds, for every (real valued) function d
f: N — R we can pull it back to a

function fo F': M — R.

F*: C°(N,R) —s C=(M,R) e s
= F(f)=foF. &

August 2025
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Pushforwards and Pullbacks

Given F': M — N, a map between

manifolds, for every (real valued) function d
f: N — R we can pull it back to a

function fo F': M — R.

F*: C°(N,R) —s C=(M,R) e s
= F(f)=foF. &

On the flip side probability distributions (or measures) p on M are pushed to Fiyu on N:

[ saem = [ F(pan
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Pushforwards and Pullbacks

Given F': M — N, a map between
manifolds, for every (real valued) function d
f: N — R we can pull it back to a
function fo F': M — R.
F* : C®(N,R) — C®(M,R) e s
f— F*(f)=foF M

On the flip side probability distributions (or measures) p on M are pushed to Fiyu on N:

[ saem = [ F(pan

Another way to see this is on a measurable set £ C N the measure of the pushforward
distribution is (F*u)(E) = u(F~Y(E)) = u({p € M : F(p) € E}).

August 2025
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Pullbacks and pushforwards, |l

The tangent vectors are pushed out to the range by the
differential, a linear map

dF, : TyM — Tp(, N.

Metrics, are bilinear forms on tangent spaces

w:T,M @ T,M — R which measure the length of the
vectors and the angle between the vectors, just like the
Euclidean dot product.
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Pullbacks and pushforwards, |l

The tangent vectors are pushed out to the range by the
differential, a linear map

dF, : TyM — Tp(, N.

Metrics, are bilinear forms on tangent spaces

w:T,M @ T,M — R which measure the length of the
vectors and the angle between the vectors, just like the
Euclidean dot product.

A Riemannian manifold is a choice of bilinear form at every tangent plane 7),M on M.
The vectors go forward, and a metric w on N can be pulled back via

F*(w)(v,w) = w(dFpv,dF,w).
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Group acting on distributions

P = (p1,p2,p3)
.

The group (R",+) acts on finite probability
distributions on 7 points by

x eip;
x-p=Nom(e*Op)=|=—"—
2.5 €Ps =17
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Group acting on distributions

Assume G acts transitively on 8 € ©. For

7o) example on the space of weights, e.g. R”.

The group (R",+) acts on finite probability
distributions on 7 points by

x eip;
x-p=Nom(e*Op)=|=—"—
2.5 €Ps =17
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Group acting on distributions

Assume G acts transitively on 8 € ©. For

7o) example on the space of weights, e.g. R”.

Every g € G definesa map 8 +— g - 6.

The group (R",+) acts on finite probability
distributions on 7 points by

x eip;
x-p=Nom(e*Op)=|=—"—
2.5 €Ps =17
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Group acting on distributions

Assume G acts transitively on 8 € ©. For

7o) example on the space of weights, e.g. R”.

Every g € G definesa map 8 +— g - 6.

v a base measure, s.t. v(g- E) = x(9)v(E),
e.g. x(g) =det(A) for g = (A, b) € Aff(n,R).
The group (R",+) acts on finite probability
distributions on 7 points by

x eip;
x-p=Nom(e*Op)=|=—"—
2.5 €Ps =17
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Group acting on distributions

P = (p1,p2.p3)
.

The group (R",+) acts on finite probability
distributions on 7 points by

eip;
x-p=Nom(e*Op)=|=—"—
2.5 €7 i=1,r

Assume G acts transitively on 8 € ©. For
example on the space of weights, e.g. R”.

Every g € G definesa map 8 +— g - 6.

v a base measure, s.t. v(g- E) = x(9)v(E),
e.g. x(g) =det(A) for g = (A, b) € Aff(n,R).

The pushforward of distributions gdv are given
by g«(qdv) = ¢9dv where

¢ (0) = ——qlg™"-0).
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Parametrizing Q by groups.

Assume a Lie group G acts on the parameter manifold O,
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Parametrizing Q by groups.

Assume a Lie group G acts on the parameter manifold ©, it also acts on distributions on ©.
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Parametrizing Q by groups.

Assume a Lie group G acts on the parameter manifold ©, it also acts on distributions on ©.
Q is formed as the orbit of such an action for any base distribution ¢o:
1

Q={¢dv:geG}. where recall ¢?(0) = @qo(g*1 -0).
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Parametrizing Q by groups.

Assume a Lie group G acts on the parameter manifold ©, it also acts on distributions on ©.
Q is formed as the orbit of such an action for any base distribution ¢o:

1

Q={¢dv:g € G}. where recall ¢°(0) = ——aqlg " 0).
. x(9)
translation
G --~"""g T aq’(0) = @0 —g)
| o G=(R,+) ©=R,
- _ scaling -
-7 g \\\\‘
o ¢?(0) = Lq0(%) ° G'=(Rxo, %), © =R,
9 =
translation & scaling
- . o G=AH[R)=R.oxR, 6 =R

0,/ \g=@An™>  a0) = a5
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The classical and Bayesian learning setups (what we learn!)

Data
parameter
space

f:@—)RZO

Model
loss

\ﬁ;}tion
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The classical and Bayesian learning setups (what we learn!)

Data . . Ce
/_\ parameter Classically: find 8* € © minimizing ¢.

g : @ X R>O Bayesian : find a distribution g € P,(0)

Model
loss

\_ﬁ;}‘cion
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Classical vs. Bayesian learning

The loss function is highly nonconvex. Usually

N
(6) => () + R(0)
i=1
where £;(0) is the loss contribution from the ><
ith data point and R(8) regularizer.

07 and 65 are both equally valid explanations of the same data.
A distribution over the data considers both explanations “at the same time".
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Betting it all on one outcome

Say two dice are thrown and | tell you that the sum is greater than 7.
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Betting it all on one outcome

Say two dice are thrown and | tell you that the sum is greater than 7.6, (] satisfies this.
We could say the result was definitely €, (7.
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Betting it all on one outcome

Say two dice are thrown and | tell you that the sum is greater than 7.6, (] satisfies this.
We could say the result was definitely €, (7.
But there are a total of 15 possibilities
6,09 (9,0 6,68 (9,6 6
69,0 6,69 @,6 (9,6
69,69 9,8 (36
69,60 (3,6
(3,
It is much more sensible to say it is one of these 15 outcomes, with equal probability.

(principle of indifference, principle of maximum entropy)
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The Bayesian Learning Problem

£(0), a loss function on model parameters @ € O. Pick a base measure v on ©.
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The Bayesian Learning Problem

£(0), a loss function on model parameters 8 € O. Pick a base measure v on ©. We solve

¢« € arg min E [0] — 7H,(q)
=:&(q)

for some family of distributions @ C P, (0) = {¢(0)dv(0)} on the parameters.
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The Bayesian Learning Problem

£(0), a loss function on model parameters 8 € O. Pick a base measure v on ©. We solve

¢« € arg min E [0] — 7H,(q)
=:&(q)

for some family of distributions @ C P, (0) = {¢(0)dv(0)} on the parameters.

@ The expectation E,[(] = [ £(0)q(8)dv(8) prefers regions with low loss.
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The Bayesian Learning Problem

£(0), a loss function on model parameters 8 € O. Pick a base measure v on ©. We solve

¢« € arg min E [0] — 7H,(q)
=:&(q)

for some family of distributions @ C P, (0) = {¢(0)dv(0)} on the parameters.

@ The expectation E,[(] = [ £(0)q(8)dv(8) prefers regions with low loss.

e The entropy H,(q) = — f@ q(0)1og q(0)dv(0) prefers a higher spread of g.
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The Bayesian Learning Problem

£(0), a loss function on model parameters 8 € O. Pick a base measure v on ©. We solve

¢« € arg min E [0] — 7H,(q)
=:&(q)
for some family of distributions @ C P, (0) = {¢(0)dv(0)} on the parameters.
@ The expectation E,[(] = [ £(0)q(8)dv(8) prefers regions with low loss.

e The entropy H,(q) = — f@ q(0)1og q(0)dv(0) prefers a higher spread of g.

@ The temperature 7 > 0 is a balancing term.
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Gradient Descent on Manifolds

Gradient descent for £(g) on the manifold Q has three
components.

@ Calculate the differential d&|, : T,Q — R.

© Find a way to turn the covector d€|, € T;Q into a
vector v € T,Q.

© A choice of retraction brings us back onto the manifold
Ry(v) € Q.

E =100
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Gradient Descent on Manifolds

Gradient descent for £(g) on the manifold Q has three
components.

@ Calculate the differential d&|, : T,Q — R.

© Find a way to turn the covector d€|, € T;Q into a
vector v € T,Q.

© A choice of retraction brings us back onto the manifold
Ry(v) € Q.

E =100

g

On every Lie group there is an
exponential map

expg: 9 — G

provides a canonical retraction.
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Optimization on the group: calculating the differential

We now solve

arg min &(¢?) = arg min/ q?(0)£(0) + 1¢7(0) log ¢?(6)dv(0)
ge@ geG JO

Given X € g = T.G the differential in the direction of X is

d ix
ge
T tcf’ (%)

_4d
—o dt Jo

¢ (0)0(0)dv(6) + 7 / > () log ¢ ()dv(6)
, €] t=0

/

data contribution entropy contribution
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Optimization on the group: calculating the differential

We now solve

arg min &(¢?) = arg min/ q?(0)£(0) + 1¢7(0) log ¢?(6)dv(0)
ge@ geG JO

Given X € g = T.G the differential in the direction of X is
d

dt

= L 0 0)0(0)dn(6) + 7 / ¢ (0) log ¢~ (6)dv(9)
=0 dt Jo . o =0

£(g%)

data contribution entropy contribution

The data contribution can be rewritten as

d [ gex
G Lo @)

t=0
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Optimization on the group: calculating the differential

We now solve

arg min &(¢?) = arg min/ q?(0)£(0) + 1¢7(0) log ¢?(6)dv(0)
ge@ geG JO

Given X € g = T.G the differential in the direction of X is
d

dt

= L 0 0)0(0)dn(6) + 7 / ¢ (0) log ¢~ (6)dv(9)
=0 dt Jo . o =0

£(g%)

data contribution entropy contribution

The data contribution can be rewritten as

d 1

a o mqa((ge”()_l -0)£(0)dv(0)

t=0
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Optimization on the group: calculating the differential

We now solve

arg min &(¢?) = arg min/ q?(0)£(0) + 1¢7(0) log ¢?(6)dv(0)
ge@ geG JO

Given X € g = T.G the differential in the direction of X is
d

dt

= L 0 0)0(0)dn(6) + 7 / ¢ (0) log ¢~ (6)dv(9)
=0 dt Jo . o =0

£(g%)

data contribution entropy contribution

The data contribution can be rewritten as

O X X
% @X@etx)qo(O)ﬁ(ge 0)dv(ge” - 0)

t=0
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Optimization on the group: calculating the differential

We now solve

arg min &(¢?) = arg min/ q?(0)£(0) + 1¢7(0) log ¢?(6)dv(0)
ge@ geG JO

Given X € g = T.G the differential in the direction of X is
d

dt

= L 0 0)0(0)dn(6) + 7 / ¢ (0) log ¢~ (6)dv(9)
=0 dt Jo . o =0

£(g%)

data contribution entropy contribution

The data contribution can be rewritten as

d

T A qO(B)E(getX -0)dv(0)

t=0
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Optimization on the group: calculating the differential

We now solve

arg min &(¢?) = arg min/ q?(0)£(0) + 1¢7(0) log ¢?(6)dv(0)
ge@ geG JO

Given X € g = T.G the differential in the direction of X is
d

dt

= L 0 0)0(0)dn(6) + 7 / ¢ (0) log ¢~ (6)dv(9)
=0 dt Jo . o =0

£(g%)

data contribution entropy contribution

The data contribution can be rewritten as

d _
I 6610(9)5(96“9 'g-0)dv(0)

t=0
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Optimization on the group: calculating the differential

We now solve

arg min &(¢?) = arg min/ q?(0)£(0) + 1¢7(0) log ¢?(6)dv(0)
ge@ geG JO

Given X € g = T.G the differential in the direction of X is
d

dt

= L 0 0)0(0)dn(6) + 7 / ¢ (0) log ¢~ (6)dv(9)
=0 dt Jo . o =0

£(g%)

data contribution entropy contribution

The data contribution can be rewritten as

% o X(19)q0(g‘1 -0)t(ge g™ - 0)dv(0)

t=0
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Optimization on the group: calculating the differential

We now solve

arg min &(¢?) = arg min/ q?(0)£(0) + 1¢7(0) log ¢?(6)dv(0)
ge@ geG JO

Given X € g = T.G the differential in the direction of X is
d

dt

= L 0 0)0(0)dn(6) + 7 / ¢ (0) log ¢~ (6)dv(9)
=0 dt Jo . o =0

£(g%)

data contribution entropy contribution

The data contribution can be rewritten as

d ~
" @qg(G)f(geth L. 0)dv(0)

t=0
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Optimization on the group: calculating the differential

We now solve

arg min &(¢?) = arg min/ q?(0)£(0) + 1¢7(0) log ¢?(6)dv(0)
ge@ geG JO

Given X € g = T.G the differential in the direction of X is
d

dt

= L 0 0)0(0)dn(6) + 7 / ¢ (0) log ¢~ (6)dv(9)
=0 dt Jo . o =0

£(g%)

data contribution entropy contribution

The data contribution can be rewritten as

[ @vetses 05 (9o 0)|_ avlo)
e
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Optimization on the group: calculating the differential

We now solve

arg min &(¢?) = arg min/ q?(0)£(0) + 1¢7(0) log ¢?(6)dv(0)
ge@ geG JO

Given X € g = T.G the differential in the direction of X is
d

dt

= L 0 0)0(0)dn(6) + 7 / ¢ (0) log ¢~ (6)dv(9)
=0 dt Jo . o =0

£(g%)

data contribution entropy contribution

The data contribution can be rewritten as

/@ 4?(0)V(6) T (Ady(X) - 6)du(6)
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Optimization on the group: calculating the differential

We now solve

arg min &(¢?) = arg min/ q?(0)£(0) + 1¢7(0) log ¢?(6)dv(0)
ge@ geG JO

Given X € g = T.G the differential in the direction of X is
d

dt

= L 0 0)0(0)dn(6) + 7 / ¢ (0) log ¢~ (6)dv(9)
=0 dt Jo . o =0

£(g%)

data contribution entropy contribution

The data contribution can be rewritten as

K
L a"(©)ve0)" (A, (X) - 0)aw(0) = = S VH(6) (Ad,(X) -0
0

=1
i~vq?
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The metric determines the fastest direction of descent.

Which descent direction is fastest depends on how we
measure distances in the tangent space.

vy is fastest if we measure ||v|| using w;

vy is fastest if ||v|| is measured using ws.

The pullback the Fisher information metric on T,s Q

wFisher(hl’ h2) — [Eq [(8h1 IOg qg)(8h2 log qg)]

to g is independent of g € G.
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The metric determines the fastest direction of descent.

Which descent direction is fastest depends on how we
measure distances in the tangent space.

vy is fastest if we measure ||v|| using w;

vy is fastest if ||v|| is measured using ws.

The pullback the Fisher information metric on T Q

wFisher(hl’ h2) — [Eq [(8h1 IOg qg)(8h2 log qg)]

to g is independent of g € G.
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Classical Learning vs. Learning via Group

The point based gradient descent updates parameters: 6 < 6 — aV{(0)
Bayesian Learning Rule(s) update the distribution over the parameters 6.

g < gexp(—aY)
@

Y € T.G is the direction of fastest ascent of £(¢9) w.r.t. the Fisher metric.
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Specific Update Formulas: The Additive Group

g € R” additive = g+ g—aEqy, [Vel(0)]
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Specific Update Formulas: The Additive Group

g € R” additive = g+ g—aEqy, [Vel(0)]

/7

Instead of going in the direction of the derivative at ¢, the direction is chosen by consensus
with at points sampled from g,.
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Multiplicative and Affine Update Formulas

If g € (RI;O, X ) acting on a parameters 0 € Ri:

X =Egu[0 0 Vel(0)] — 7

ge—goe X
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Multiplicative and Affine Update Formulas

If g € (RI;O, X ) acting on a parameters 0 € Ri:

X =Egu[0 0 Vel(0)] — 7

ge—goe X

, : X
For the Affine group the Lie algebra elements (tangent vectors) are of the form <0—r g) and
the gradient update at ¢9 is

X =K, [ATvge(Ae + b)eT] 7l y =K, [ATVE(AG + b)] .

with a slightly more involved exponential map

—aX_I
A AemoX b<—AeTy+b
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Filters of the multiplicative group

Label nodes in a neural network “excitatory” or
“inhibitory” like biology.

Magnitudes of the weights (in R~() are the
parameters (signs are fixed).
At each layer the map is x — o(Wix — W_x).
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Filters of the multiplicative group

Label nodes in a neural network “excitatory” or
“inhibitory” like biology.

Magnitudes of the weights (in R~() are the
parameters (signs are fixed).
At each layer the map is x — o(Wix — W_x).

Given g € RI;O. and qo Rayleigh, say, and 0; ~ a
forj=1,..., K

K
1

M+~ 8M+(1-p Zg@B )WVi(g©6;) —
J=1

g+ goexp(—aM)

August 2025
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Filters of the multiplicative group

Label nodes in a neural network “excitatory” or
“inhibitory” like biology.

excitatory

Magnitudes of the weights (in R~() are the
parameters (signs are fixed).
At each layer the map is x — o(Wix — W_x).

15% hidden layer

sparse weights

Given g € RI;O. and qo Rayleigh, say, and 0; ~ a
forj=1,..., K

N

1
M+~ 8M+(1-p Zg@ﬂ )WVi(g©6;) —

J=1

g+ goexp(—aM)

August 2025
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Multiplicative vs Additive filters
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The additive vs multiplicative filters for RGB images
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Tesekkiirler
HNHES TS VET
Vielen Danke
Merci
Thank you.?

2More can be found at my blog-posts via https://ekiral.github.io/blog/blog-index html
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Stiefel Manifold Update

Assume parameters are given as a matrix and want to preserve orthogonality of columns.
O = St(n,m) = {# € Mat(n,m) : 00 = L,xm}

The group S = SO(n) preserves this manifold. And given a loss function £: © — R>g

Y € so(n) the update direction Y = SkewY, = Y0—27Y0T Yo =E,, [VE0]
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Stiefel Manifold Update

Assume parameters are given as a matrix and want to preserve orthogonality of columns.
O = St(n,m) = {# € Mat(n,m) : 00 = L,xm}
The group S = SO(n) preserves this manifold. And given a loss function £: © — R>g

Y € so(n) the update direction Y = SkewY, = Y0—27Y0T Yo =E,, [VE0]

Here the distributions are parametrized by A € Mat(n,m)
QA(G) . e—Tr(ATG)
and the update is given by

A e VA (actually an efficient variation is used)
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Koichi Tojo, Taro Yoshino's: “Harmonic Exponential Families' .

G a Lie group H < G. Let v be a relatively invariant measure on G 7 : G — GL(V) a
representation of GG. Let a be a 1-cocycle of 7 such that a}H =0. So a: G — V satisfies

a(gh) = m(g)a(h) + a(g) = a(g). Soa:G/H—V
——
=0
Let v be a relatively invariant measure on ©, meaning v(gE) = x(g)v(E) for some
homomorphism x. Let A € VV s.t. A(\) = log [, e=M@)du(0) < 0o. For such A
o (0)dv(0) = e~ MO =AN gy (9)

forms an exponential family satisfying

x(lg)qx(g‘le) = qrv(ga(0)  where (1V(g))\,v) = (A, 7(g)v).
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Constrained maximization: Statistical mechanics interpretation

Assume 6 to be a kind of “microstate” with energy level £(6). So © is some “state space”.
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Constrained maximization: Statistical mechanics interpretation

Assume 6 to be a kind of “microstate” with energy level £(6). So © is some “state space”.

Assume a distribution of the microstates (across “particles”)

Statistical mechanics: . .
maximizing entropy, constrained to have expected energy < Ej.
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Constrained maximization: Statistical mechanics interpretation

Assume 6 to be a kind of “microstate” with energy level £(6). So © is some “state space”.

- : Assume a distribution of the microstates (across “particles”)
Statistical mechanics: . .
maximizing entropy, constrained to have expected energy < Ej.

Lagrange multiplier 5 > 0:

. . 1
arg min —H, (¢) + B(Eqauv[¢] — Eo) = arg minEqq, [¢] — =H,(q)
4€P,(©) 4€P,(©) B

T= % corresponds to the thermodynamical notion of temperature.
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The exact posterior.

If @ =P,(O) then there is a unique minimizer p.(0) e 740).

arg minEq,[¢] — 7H(q) =
qeQ
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The exact posterior.

If @ =P,(O) then there is a unique minimizer p.(0) e 740).

arg min Eqq, [¢] — 7H(q) = arg minEyq, [— log e_%e] + Eqay[log g
qeQ qeQ
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The exact posterior.

If @ =P,(O) then there is a unique minimizer p.(0) e 740).

arg min Eqq, [{] — 7H(q) = arg min/ log ( q(le) > q(0)dv(6)
q€Q g0 Jo e~ 40)
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The exact posterior.

If @ =P,(O) then there is a unique minimizer p.(0) e 740).

arg min Eqq, [¢] — 7H(q) = arg min/ log ( a(9) > q(0)dv(0) + const.
4€Q €0 Jo p-(6)
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The exact posterior.

If @ =P,(O) then there is a unique minimizer p.(0) e 740).

arg min Eqq, [¢] — 7H(q) = arg min D, (q||p,).
qeQ qeQ
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The exact posterior.

If @ =P,(O) then there is a unique minimizer p.(0) e 740).

arg min Eqq, [¢] — 7H(q) = arg min D, (q||p,).
qeQ qeQ

loss landscape

p-(0) o

Minimize the objective £(q) := D(q||p;) for ¢ € Q...
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The exact posterior.

If @ =P,(O) then there is a unique minimizer p(0) e= 710,

arg min Eqq, [¢] — 7H(q) = arg min D, (q||p,).
qeQ qeQ

optimizer in
all distributions e br

loss landscape

closest dist in\Q
in KL-sense

p-(0) ©

Minimize the objective £(q) := D(q||p;) for ¢ € Q...
...an approximate Bayesian solution.
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Why call it Bayesian?

Let 4(0) = Zfil 0;(0) + R(0). Observe new data (Xnew, Ynew) With loss contribution /ey,
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Why call it Bayesian?

Let 4(0) = Zfil 0;(0) + R(0). Observe new data (Xnew, Ynew) With loss contribution /ey,

How to update p,? Take 7 =1
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Why call it Bayesian?

Let £(0) = Zfil 0;(0) + R(0). Observe new data (Xnew, Ynew) With loss contribution /ey,
How to update p,? Take 7 =1
Bayes' rule is about conditional probabilities, and updating priors:

P(B|A)P(A)

PAIB) = =55

Interpret ¢ %i(?) as the likelihood of observing label y; given the model parameter 6 and x;.
Interpret 7(0) o< e~ 11(®) as the prior on the parameters.
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Why call it Bayesian?

Let £(0) = Zfil 0;(0) + R(0). Observe new data (Xnew, Ynew) With loss contribution /ey,
How to update p,? Take 7 =1
Bayes' rule is about conditional probabilities, and updating priors:

P(B|A)P(A)

PAIB) = =55

Interpret ¢ %i(?) as the likelihood of observing label y; given the model parameter 6 and x;.
Interpret 7(0) o< e~ 11(®) as the prior on the parameters.

After one round of learning the posterior p o e~ 2=i ‘i is our prior belief about @ distribution.
According to Bayes rule updated belief should be after a new data point.

pupdated (9) X e*fnew(e)p(g).
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Why call it Bayesian?

Let £(0) = Zfil 0;(0) + R(0). Observe new data (Xnew, Ynew) With loss contribution /ey,
How to update p,? Take 7 =1
Bayes' rule is about conditional probabilities, and updating priors:

P(B|A)P(A)

PAIB) = =55

Interpret ¢ %i(?) as the likelihood of observing label y; given the model parameter 6 and x;.
Interpret 7(0) o< e~ 11(®) as the prior on the parameters.

After one round of learning the posterior p o e~ 2=i ‘i is our prior belief about @ distribution.
According to Bayes rule updated belief should be after a new data point.

pupdated (9) X e*fnew(e)p(g).

This is also the optimizer if we had initially considered the loss function £, pdated = € 4 £new-
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Exponential Families

Let T: © — V, called the sufficient statistic. Call
Q=0,(T) = {)\ eVY iAW) = log/ e~ MOy () < oo} :
<}

Then ¢ () = e~ NT(0)=AN) form an exponential family of distributions.
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Exponential Families

Let T : ©® — V, called the sufficient statistic. Call

Q=0,(T) = {)\ eVY iAW) = log/ e~ NTONdy(9) < oo} : e
S

Then ¢ () = e~ NT(0)=AN) form an exponential family of distributions. Q

oA
N
2

ai;&- = [T(0) = 1) (T(6) ~ )ax(0)av(6)

—Eyy |(351080) (55 108 a) | = Fij(A)  Fisher Matrix

| D) A TO AN 41(6) — By, [T) =
(€]
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Exponential Families

Let T : ©® — V, called the sufficient statistic. Call

Q=0,(T) = {)\ eVY iAW) = log/ e~ NTONdy(9) < oo} : o
S

Then ¢ () = e~ NT(0)=AN) form an exponential family of distributions. Q

oA
N
2

ai;&- = [T(0) = 1) (T(6) ~ )ax(0)av(6)

—Eyy |(351080) (55 108 a) | = Fij(A)  Fisher Matrix

| D) A TO AN 41(6) — By, [T) =
(€]

Example: If T(0) = [092] then we get 1-D Gaussians gx(8) oc e~ *10=226% for Ay > 0.
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Harmonic exponential families (by Koichi Tojo & Taro Yoshino)

What about exponential families on © which are closed under a Lie group action?

e Homogeneous space © = G/H.

Learning Distributions using Lie Groups August 2025



Harmonic exponential families (by Koichi Tojo & Taro Yoshino)

What about exponential families on © which are closed under a Lie group action?

e Homogeneous space © = G/H.

@ v a relatively invariant base measure
dv(g - 0) = x(g)dv(0).
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Harmonic exponential families (by Koichi Tojo & Taro Yoshino)

What about exponential families on © which are closed under a Lie group action?

e Homogeneous space © = G/H.

@ v a relatively invariant base measure
dv(g - 0) = x(g)dv(0).

@ A finite dimensional representation
m: G — GL(V).
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Harmonic exponential families (by Koichi Tojo & Taro Yoshino)

What about exponential families on © which are closed under a Lie group action?

e Homogeneous space © = G/H.

@ v a relatively invariant base measure
dv(g - 0) = x(g)dv(0).

@ A finite dimensional representation
m: G — GL(V).

@ A l-cocycle of 7 such that a!H =0. So
o : G — V satisfies

a(gh) = m(g)a(h) + a(g) = a(g).

Thusa: © = V.
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Harmonic exponential families (by Koichi Tojo & Taro Yoshino)

What about exponential families on © which are closed under a Lie group action?

Let A€ Q, (a) CVVie,
Homogeneous space © = G/H. AN = 1og(f9) e_</\’°‘(9)>dy(9) < .

v a relatively invariant base measure

dv(g-0) = x(g9)dv(0). o (0)dv () := e~ M) =AN qp(p)
A finite dimensional representation

m: G — GL(V).

A 1-cocycle of 7 such that «| , = 0. So

o : G — V satisfies

a(gh) = m(g)a(h) + a(g) = a(g).

Thusa: © = V.
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Harmonic exponential families (by Koichi Tojo & Taro Yoshino)

What about exponential families on © which are closed under a Lie group action?

Let A € Q,(a) CVVie,

e Homogeneous space © = G/H. AN = log f@ e_</\’°‘(6)>dy(9) < .
@ v a relatively invariant base measure

dv(g-0) = x(g9)dv(0). o (0)dv () := e~ M) =AN qp(p)
@ A finite dimensional representation

m: G — GL(V). forms an exponential family closed under
@ A l-cocycle of 7 such that a!H =0. So pushforwards

«a : G — V satisfies
a(gh) = m(g)a(h) + alg) = a(g).

Thusa: © = V.
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Harmonic exponential families (by Koichi Tojo & Taro Yoshino)

What about exponential families on © which are closed under a Lie group action?

Let A € Q,(a) CVVie,

e Homogeneous space © = G/H. AN = log f@ e_</\’°‘(6)>dy(9) < .
@ v a relatively invariant base measure

dv(g-0) = x(g9)dv(0). o (0)dv () := e~ M) =AN qp(p)
@ A finite dimensional representation

m: G — GL(V). forms an exponential family closed under
@ A l-cocycle of 7 such that a!H =0. So pushforwards 1

a: G — V satisfies 0)90) = ——aqr (g0

(02)?(0) ) Ay 0)
a(gh) = m(g)a(h) + a(g) = a(g).
Thusa: 0 — V.
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Harmonic exponential families (by Koichi Tojo & Taro Yoshino)

What about exponential families on © which are closed under a Lie group action?

Let A € Q,(a) CVVie,

e Homogeneous space © = G/H. AN = log f@ e_</\’°‘(6)>dy(9) < .
@ v a relatively invariant base measure
dv(g-0) = x(g9)dv(0). o (0)dv () := e~ M) =AN qp(p)
@ A finite dimensional representation
m: G — GL(V). forms an exponential family closed under
@ A l-cocycle of 7 such that a!H =0. So pushforwards 1 )
a: G — V satisfies (00)9(0) = ——qa(g710) = e~ Nalg =AM
x(9)
a(gh) = m(g)a(h) + a(g) = a(g).
Thusa: 0 — V.
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Harmonic exponential families (by Koichi Tojo & Taro Yoshino)

What about exponential families on © which are closed under a Lie group action?

Let A € Q,(a) CVVie,

e Homogeneous space © = G/H. AN = log f@ e_</\’°‘(6)>dy(9) < .
@ v a relatively invariant base measure
dv(g-0) = x(g9)dv(0). o (0)dv () := e~ M) =AN qp(p)
@ A finite dimensional representation
m: G — GL(V). forms an exponential family closed under
@ A l-cocycle of 7 such that a!H =0. So pushforwards 1 )
a: G — V satisfies (gx)9(0) = X9 )qA(qu) = ¢~ (halgm 0)-AR)
X9
a(gh) = n(g)a(h) + a(g) = a(g). — e~ Ha(0))—AN)—a(g™)
Thusa: 0 — V.
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Harmonic exponential families (by Koichi Tojo & Taro Yoshino)

What about exponential families on © which are closed under a Lie group action?

Let A € Q,(a) CVVie,

e Homogeneous space © = G/H. AN = log f@ e_</\’°‘(6)>dy(9) < .
@ v a relatively invariant base measure
dv(g-0) = x(g9)dv(0). o (0)dv () := e~ M) =AN qp(p)
@ A finite dimensional representation
m: G — GL(V). forms an exponential family closed under
@ A l-cocycle of 7 such that a!H =0. So pushforwards 1 )
a: G — V satisfies (gx)9(0) = @qA(gAG) = ¢~ (halgm 0)-AR)
a(gh) = n(g)a(h) + a(g) = a(g). — e~ Ha(0))—AN)—a(g™)

— {7V (g)\ (0
Thusa: 0 = V. x e~ (™ (9Aa(0))
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Harmonic exponential families (by Koichi Tojo & Taro Yoshino)

What about exponential families on © which are closed under a Lie group action?

Let A € Q,(a) CVVie,

e Homogeneous space © = G/H. AN = log f@ e_</\’°‘(6)>dy(9) < .
@ v a relatively invariant base measure
dv(g-0) = x(g9)dv(0). o (0)dv () := e~ M) =AN qp(p)
@ A finite dimensional representation
m: G — GL(V). forms an exponential family closed under
@ A l-cocycle of 7 such that a!H =0. So pushforwards 1 )
a: G — V satisfies (gx)9(0) = @qA(gAG) = ¢~ (halgm 0)-AR)
a(gh) = n(g)a(h) + a(g) = a(g). — e~ Ha(0))—AN)—a(g™)

—(mV(g)\, (0
Thusa: 0 = V. oc e~ (T (@XeO)) o qu(g)A(Q)

Learning Distributions using Lie Groups August 2025



Linear Approximation of Lie group update is NGD on natural parameters

The Lie group rule is for transformation families. BLR is NGD on \'s of exponential families.

Learning Distributions using Lie Groups August 2025



Linear Approximation of Lie group update is NGD on natural parameters

The Lie group rule is for transformation families. BLR is NGD on \'s of exponential families.
The overlap is harmonic exponential families:

Pushforwards of ¢y are still in the family,

(@)? =qv with N =7"(g)A
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Linear Approximation of Lie group update is NGD on natural parameters

The Lie group rule is for transformation families. BLR is NGD on \'s of exponential families.
The overlap is harmonic exponential families:

Pushforwards of ¢y are still in the family,
(@2)? =qv  with XN =m"(g)A

Thus @ ={A e Q: X =7Y(¢9)\o,g € G} and
updates are given by \updated — Vv (gupdatedyy
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Linear Approximation of Lie group update is NGD on natural parameters

The Lie group rule is for transformation families. BLR is NGD on \'s of exponential families.
The overlap is harmonic exponential families:

VV

Pushforwards of ¢y are still in the family,
(@2)? =qv  with XN =m"(g)A

Thus @ ={A e Q: X =7Y(¢9)\o,g € G} and
updates are given by \updated — Vv (gupdatedyy

A
Other quantities of ¢, also vary with g: |

n(N) =7(g)A + alg) )
A(N) = A(N) +log(x(9)) + alg™)
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Linear Approximation of Lie group update is NGD on natural parameters

The Lie group rule is for transformation families. BLR is NGD on \'s of exponential families.
The overlap is harmonic exponential families:

Vv V\/

Pushforwards of ¢y are still in the family,
(@2)? =qv  with XN =m"(g)A

Thus @ ={A e Q: X =7Y(¢9)\o,g € G} and
updates are given by \updated — Vv (gupdatedyy

Other quantities of ¢, also vary with g:

e Ao

n(N) =7(g)A + alg) 0
A(N) = A(N) +log(x(9)) + alg™) Q
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