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Transformations of objects. Groups, arise!

Permutations on n letters. This preserves the distinctness of elements of the set.
Given two permutations you can apply one after the other.

σ

ρ

ρ ◦ σ σ ◦ ρ

The identity permutation:

e

The resulting object is the symmetric group
on n letters, denoted by Sn or Symn.
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Matrix Groups

Invertible linear maps also preserve the linear structure of vectors. It is a group.

GL(V ) =

{
A : V → V

∣∣∣∣A(v +w) = Av +Aw,

A(αv) = αAv
, A−1 exists

}
.

Also denoted by GL(n,R) if V is an n-dimensional real vector space, i.e. V ∼= Rn.

If preserve extra structure such as inner product ⟨v,w⟩ = v⊤w then obtain a subgroup

SO(n,R) = {A ∈ GL(n,R)|⟨Av, Aw⟩ = ⟨v,w⟩,det(A) > 0} .

The upper triangular
matrices are also closed
under multiplication and
inversion

B =


∗ ∗ ∗ · · · ∗
0 ∗ ∗ ∗

0 0
. . . ∗

0 0 · · · 0 ∗

 What does this set of
matrices preserve?

Kıral Learning Distributions using Lie Groups August 2025 4 / 36



Matrix Groups

Invertible linear maps also preserve the linear structure of vectors. It is a group.

GL(V ) =

{
A : V → V

∣∣∣∣A(v +w) = Av +Aw,

A(αv) = αAv
, A−1 exists

}
.

Also denoted by GL(n,R) if V is an n-dimensional real vector space, i.e. V ∼= Rn.

If preserve extra structure such as inner product ⟨v,w⟩ = v⊤w then obtain a subgroup

SO(n,R) = {A ∈ GL(n,R)|⟨Av, Aw⟩ = ⟨v,w⟩,det(A) > 0} .

The upper triangular
matrices are also closed
under multiplication and
inversion

B =


∗ ∗ ∗ · · · ∗
0 ∗ ∗ ∗

0 0
. . . ∗

0 0 · · · 0 ∗

 What does this set of
matrices preserve?

Kıral Learning Distributions using Lie Groups August 2025 4 / 36



Matrix Groups

Invertible linear maps also preserve the linear structure of vectors. It is a group.

GL(V ) =

{
A : V → V

∣∣∣∣A(v +w) = Av +Aw,

A(αv) = αAv
, A−1 exists

}
.

Also denoted by GL(n,R) if V is an n-dimensional real vector space, i.e. V ∼= Rn.

If preserve extra structure such as inner product ⟨v,w⟩ = v⊤w then obtain a subgroup

SO(n,R) = {A ∈ GL(n,R)|⟨Av, Aw⟩ = ⟨v,w⟩,det(A) > 0} .

The upper triangular
matrices are also closed
under multiplication and
inversion

B =


∗ ∗ ∗ · · · ∗
0 ∗ ∗ ∗

0 0
. . . ∗

0 0 · · · 0 ∗



What does this set of
matrices preserve?

Kıral Learning Distributions using Lie Groups August 2025 4 / 36



Matrix Groups

Invertible linear maps also preserve the linear structure of vectors. It is a group.

GL(V ) =

{
A : V → V

∣∣∣∣A(v +w) = Av +Aw,

A(αv) = αAv
, A−1 exists

}
.

Also denoted by GL(n,R) if V is an n-dimensional real vector space, i.e. V ∼= Rn.

If preserve extra structure such as inner product ⟨v,w⟩ = v⊤w then obtain a subgroup

SO(n,R) = {A ∈ GL(n,R)|⟨Av, Aw⟩ = ⟨v,w⟩,det(A) > 0} .

The upper triangular
matrices are also closed
under multiplication and
inversion

B =


∗ ∗ ∗ · · · ∗
0 ∗ ∗ ∗

0 0
. . . ∗

0 0 · · · 0 ∗

 What does this set of
matrices preserve?

Kıral Learning Distributions using Lie Groups August 2025 4 / 36



Groups

A group is a set G together with a binary operation

∗ : G×G −→ G

(g, h) 7−→ g ∗ h

satisfying

1 (associativity) (g ∗ h) ∗ k = g ∗ (h ∗ k) for every g, h, k ∈ G.

2 (existence of identity) There is an e ∈ G such that e ∗ g = g and g ∗ e = g for every g ∈ G.

3 (existence of inverses) For every g ∈ G there exists an h ∈ G such that g ∗ h = h ∗ g = e.

Additive symbol ‘∗’ = ‘+’ for Abelian groups: a+ b = b+ a.
Multiplicative notation mostly omits the ∗ symbol, and ab ̸= ba can happen (think matrices).

The closure property of the group operation is simply that a ∗ b ∈ G if a, b ∈ G.
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Examples of Groups

1 (V,+). Any vector space V with vector addition as the binary operation.

2 (R>0,×). Positive real numbers R>0 under multiplication.

3 GL(n,R). Invertible n× n matrices, under matrix multiplication.

4 Aff(n,R) ∼= GL(n,R)⋉Rn. The Affine group, consisting of pairs (A,b) where the group
multiplication is (A1,b1)(A2,b2) = (A1A2, Ab2 + b1).
Another way to realize this group is as a subgroup of (n+ 1)× (n+ 1) matrices.(

A1 b1

0⊤ 1

)(
A2 b2

0⊤ 1

)
=

(
A1A2 b1 +A1b2

0⊤ 1

)
and

(
A b
0⊤ 1

)−1

=

(
A−1 −A−1b
0⊤ 1

)

A group representation is a group homomorphism π : G→ GL(V ), (i.e. π(gh) = π(g)π(h))
so that any element g can be seen as a matrix π(g).

Elements of the symmetric group S3 can be represented as matrices: π((12)(3)) =
(

0 1 0
1 0 0
0 0 1

)
.
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Group Actions

A group G acts on a set X if there is a map

· : G×X → X

satisfying

1 (gh) · x = g · (h · x) for all g, h ∈ G and x ∈ X

2 e · x = x for all x ∈ X where e ∈ G is the identity.

Every group acts on itself with the group multiplication. In other words X = G and g · x = gx.

Another example, (A,b) ∈ Aff(n,R) acting on x ∈ Rn by

(A,b) · x = Ax+ b.
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A bit on manifolds

Manifolds are geometric objects
which have local coordinates via
charts φ : U ⊆ Rm →M .

M

p

φ

Rm

U

M

p

N

TpM
F

F (p)

TF (p)N

dFp(v)

v

dFp

Differential of maps between two manifolds are linear
maps between their tangent spaces. So if N ⊆ R—as
Tf(p)N ∼= R for any point p—we get a linear map
dfp : TpM → R, i.e. a linear functional: dfp ∈ T ∗

pM .
If we have two maps F : M → N and G : N → P then the chain rule is

d(G ◦ F )p = dGF (p)dFp

On the right hand side, we have a composition of two linear maps, written multiplicatively.
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Manifolds of distributions: more than one chart is possible

(λ1, λ2)

(m,σ2 +m2)

N (m,σ2)

Q
The 1-d Gaussian distributions form a two
dimensional manifold with a single chart. But
there can be more than one parametrization.
One with natural parameters

(λ1, λ2) 7−→ q(x) ∝ e−λ1x−λ2x2

or on the other hand, the expectations of x
and x2 are also enough to characterize

q(x) = 1√
2πσ

e−
(x−m)2

2σ2 .

The Euclidean inner product w.r.t. (λ1, λ2) or w.r.t. (µ1, µ2) = (m,σ2 +m2) gives different
angles between tangent vectors to TqQ.
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Lie groups: Multiplication connects tangent planes.

e

g

TeG = g

TgG

G

dLg

dRg

Lie groups are groups which are also manifolds.
Multiplication and inversion maps are smooth.

For every g ∈ G left and right multiplication maps defined by
Lg(x) = gx,Rg(x) = xg send e to g.
Their differentials connect the tangent spaces g and TgG.

If learning on a general man-
ifold, then vectors at different
points are in totally different vec-
tor spaces. How to add them,
like in momentum accumulation? M

pt

pt+1vt vt+1

Rg−1 ◦ Lg : e 7→ e, its differential is the adjoint map Adg : g→ g. Identity for commutative
groups.
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Pushforwards and Pullbacks

Given F : M → N , a map between
manifolds, for every (real valued) function
f : N → R we can pull it back to a
function f ◦ F : M → R.

F ∗ : C∞(N,R) −→ C∞(M,R)
f 7−→ F ∗(f) = f ◦ F.

M

N

F

R

ff ◦ F

On the flip side probability distributions (or measures) µ on M are pushed to F∗µ on N :∫
N
fd(F∗µ) =

∫
M

F ∗(f)dµ.

Another way to see this is on a measurable set E ⊆ N the measure of the pushforward
distribution is (F ∗µ)(E) = µ(F−1(E)) = µ({p ∈M : F (p) ∈ E}).
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Pullbacks and pushforwards, II

The tangent vectors are pushed out to the range by the
differential, a linear map

dFp : TpM → TF (p)N.

Metrics, are bilinear forms on tangent spaces
ω : TpM ⊗ TpM → R which measure the length of the
vectors and the angle between the vectors, just like the
Euclidean dot product.

M

p

TpM

v

wα

A Riemannian manifold is a choice of bilinear form at every tangent plane TpM on M .
The vectors go forward, and a metric ω on N can be pulled back via

F ∗(ω)(v,w) = ω(dFpv,dFpw).
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Group acting on distributions

p = (p1, p2, p3)

The group (Rr,+) acts on finite probability
distributions on r points by

x · p = Norm(ex ⊙ p) =

(
exipi∑
j e

xjpj

)
i=1,...,r

Assume G acts transitively on θ ∈ Θ. For
example on the space of weights, e.g. RP .

Every g ∈ G defines a map θ 7→ g · θ.

ν a base measure, s.t. ν(g · E) = χ(g)ν(E),
e.g. χ(g) = det(A) for g = (A,b) ∈ Aff(n,R).

The pushforward of distributions qdν are given
by g∗(qdν) = qgdν where

qg(θ) =
1

χ(g)
q(g−1 · θ).
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Parametrizing Q by groups.

Assume a Lie group G acts on the parameter manifold Θ,

it also acts on distributions on Θ.
Q is formed as the orbit of such an action for any base distribution q0:

Q = {qgdν : g ∈ G}. where recall qg(θ) =
1

χ(g)
q0(g

−1 · θ).

q0
qg(θ) = 1

g
q0(

θ
g
)

g

g = (A, b) qg(θ) = 1
A
q0(

θ−b
A
)q0

translation & scaling

scaling

q0 qg(θ) = q0(θ − g)
translation

g

0

G = (R,+), Θ = R,

G = (R>0,×), Θ = R>0,

G = Aff(R) = R>0 ⋉R, Θ = R
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The classical and Bayesian learning setups (what we learn!)

ℓ : Θ −→ R≥0
loss

Data

Model

parameter
space

function

Classically: find θ∗ ∈ Θ minimizing ℓ.

Bayesian : find a distribution q ∈ Pν(Θ)
....
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Classical vs. Bayesian learning

The loss function is highly nonconvex. Usually

ℓ(θ) =

N∑
i=1

ℓi(θ) +R(θ)

where ℓi(θ) is the loss contribution from the
ith data point and R(θ) regularizer.

Θ

ℓ(θ)

θ∗
2θ∗

1

q(θ)

θ∗
1 and θ∗

2 are both equally valid explanations of the same data.
A distribution over the data considers both explanations “at the same time”.
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Betting it all on one outcome

Say two dice are thrown and I tell you that the sum is greater than 7.

, satisfies this.

We could say the result was definitely , .

But there are a total of 15 possibilities

, , , , ,
, , , ,
, , ,
, ,
,

It is much more sensible to say it is one of these 15 outcomes, with equal probability.

(principle of indifference, principle of maximum entropy)
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The Bayesian Learning Problem

ℓ(θ), a loss function on model parameters θ ∈ Θ. Pick a base measure ν on Θ.

We solve

q∗ ∈ arg min
q∈Q

Eq[ℓ]− τHν(q)︸ ︷︷ ︸
=:E(q)

for some family of distributions Q ⊆ Pν(Θ) = {q(θ)dν(θ)} on the parameters.

The expectation Eq[ℓ] =
∫
Θ ℓ(θ)q(θ)dν(θ) prefers regions with low loss.

The entropy Hν(q) = −
∫
Θ q(θ) log q(θ)dν(θ) prefers a higher spread of q.

The temperature τ > 0 is a balancing term.
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Gradient Descent on Manifolds

Gradient descent for E(q) on the manifold Q has three
components.

1 Calculate the differential dE|q : TqQ 7→ R.
2 Find a way to turn the covector dE|q ∈ T ∗

qQ into a
vector v ∈ TqQ.

3 A choice of retraction brings us back onto the manifold
Rq(v) ∈ Q.

q

E = 100

80

60

40
Q

q

Rq(v)

v

TqQ

Q

e

g

G

expG(tv)

v

On every Lie group there is an
exponential map

expG : g→ G

provides a canonical retraction.
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Optimization on the group: calculating the differential

We now solve

arg min
g∈G

E(qg) = arg min
g∈G

∫
Θ
qg(θ)ℓ(θ) + τqg(θ) log qg(θ)dν(θ)

Given X ∈ g = TeG the differential in the direction of X is

d

dt
E(qgetX )

∣∣∣∣
t=0

=
d

dt

∫
Θ
qge

tX
(θ)ℓ(θ)dν(θ)︸ ︷︷ ︸

data contribution

+ τ

∫
Θ
qge

tX
(θ) log qge

tX
(θ)dν(θ)︸ ︷︷ ︸

entropy contribution

∣∣∣∣
t=0

The data contribution can be rewritten as
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data contribution

+ τ

∫
Θ
qge

tX
(θ) log qge

tX
(θ)dν(θ)︸ ︷︷ ︸

entropy contribution

∣∣∣∣
t=0

The data contribution can be rewritten as

d

dt

∫
Θ

1

χ(g)
q0(g

−1 · θ)ℓ(getXg−1 · θ)dν(θ)
∣∣∣∣
t=0
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The metric determines the fastest direction of descent.

Which descent direction is fastest depends on how we
measure distances in the tangent space.
v1 is fastest if we measure ∥v∥ using ω1

v2 is fastest if ∥v∥ is measured using ω2.
The pullback the Fisher information metric on TqgQ

ωFisher(h1, h2) = Eq [(∂h1 log q
g)(∂h2 log q

g)]

to g is independent of g ∈ G. ω1(v,v) = 1
ω2(v,v) = 1

g

v1

v2

Indeed hgX(θ) := d
dtq

getX (θ)
∣∣∣
t=0

= 1
χ(g)h

e
X(g−1 · θ), so a change of variables θ 7→ g · θ shows

ωg(X,Y ) =

∫
Θ

hgX(θ)

qg(θ)

hgX(θ)

qg(θ)
qg(θ)dν(θ) = ωe(X,Y ).
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Classical Learning vs. Learning via Group

The point based gradient descent updates parameters: θ ← θ − α∇ℓ(θ)
Bayesian Learning Rule(s) update the distribution over the parameters θ.

qg1

qg2

qg3

ℓ(θ)

g ← g exp(−αY )

Y ∈ TeG is the direction of fastest ascent of E(qg) w.r.t. the Fisher metric.
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Specific Update Formulas: The Additive Group

g ∈ RP additive =⇒ g ←− g − αEqg

[
∇θℓ(θ)

]

Instead of going in the direction of the derivative at g, the direction is chosen by consensus
with at points sampled from qg.
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Multiplicative and Affine Update Formulas

If g ∈ (RP
>0,×) acting on a parameters θ ∈ RP

+:

X = Eqg [θ ⊙∇θℓ(θ)]− τ

g ←− g ⊙ e−αX

For the Affine group the Lie algebra elements (tangent vectors) are of the form

(
X y
0⊤ 0

)
and

the gradient update at qg is

X = Eq0

[
A⊤∇θℓ(Aθ + b)θ⊤

]
− τI y = Eq0

[
A⊤∇ℓ(Aθ + b)

]
.

with a slightly more involved exponential map

A←− Ae−αX b←− A
e−αX − I

X
y + b
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Filters of the multiplicative group

Label nodes in a neural network “excitatory” or
“inhibitory” like biology.

Magnitudes of the weights (in R>0) are the
parameters (signs are fixed).
At each layer the map is x 7→ σ(W+x−W−x).

Given g ∈ RP
>0, and q0 Rayleigh, say, and θj ∼ qP0

for j = 1, . . . ,K

M ← βM + (1− β)
1

K

K∑
j=1

(g ⊙ θj)∇ℓ(g ⊙ θj)− τ

g ← g ⊙ exp (−αM)

1st hidden layer

excitatory

inhibitory

...

sparse weights
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Multiplicative vs Additive filters
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The additive vs multiplicative filters for RGB images
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Teşekkürler
ありがとうございます

Vielen Danke
Merci

Thank you.2

2More can be found at my blog-posts via https://ekiral.github.io/blog/blog-index.html
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Stiefel Manifold Update

Assume parameters are given as a matrix and want to preserve orthogonality of columns.

Θ = St(n,m) = {θ ∈ Mat(n,m) : θ⊤θ = Im×m}

The group S = SO(n) preserves this manifold. And given a loss function ℓ : Θ→ R≥0

Y ∈ so(n) the update direction Y = SkewY0 =
Y0−Y ⊤

0
2

Y0 = EqΛ [∇ℓθ⊤]

Here the distributions are parametrized by Λ ∈ Mat(n,m)

qΛ(θ) ∝ e−Tr(Λ⊤θ)

and the update is given by

Λ← e−αY Λ (actually an efficient variation is used)
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Koichi Tojo, Taro Yoshino’s: “Harmonic Exponential Families”.

G a Lie group H ≤ G. Let ν be a relatively invariant measure on G π : G→ GL(V ) a
representation of G. Let α be a 1-cocycle of π such that α

∣∣
H
≡ 0. So α : G→ V satisfies

α(gh) = π(g)α(h) + α(g) = α(g). So α : G/H︸ ︷︷ ︸
:=Θ

→ V

Let ν be a relatively invariant measure on Θ, meaning ν(gE) = χ(g)ν(E) for some
homomorphism χ. Let λ ∈ V ∨ s.t. A(λ) = log

∫
Θ e−⟨λ,α(θ)⟩dν(θ) <∞. For such λ

qλ(θ)dν(θ) := e−⟨λ,α(θ)⟩−A(λ)dν(θ)

forms an exponential family satisfying

1

χ(g)
qλ(g

−1θ) := qπ∨(g)λ(θ) where ⟨π∨(g)λ, v⟩ = ⟨λ, π(g)v⟩.
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Constrained maximization: Statistical mechanics interpretation

Assume θ to be a kind of “microstate” with energy level ℓ(θ). So Θ is some “state space”.

Statistical mechanics:
Assume a distribution of the microstates (across “particles”)
maximizing entropy, constrained to have expected energy ≤ E0.

Lagrange multiplier β ≥ 0:

arg min
q∈Pν(Θ)

−Hν(q) + β(Eqdν [ℓ]− E0) = arg min
q∈Pν(Θ)

Eqdν [ℓ]−
1

β
Hν(q)

τ = 1
β corresponds to the thermodynamical notion of temperature.
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The exact posterior.

If Q = Pν(Θ) then there is a unique minimizer pτ (θ) ∝ e−
1
τ
ℓ(θ):

arg min
q∈Q

Eqdν [ℓ]− τH(q) =

Θ

loss landscape
ℓ(θ)

pτ(θ)

Minimize the objective E(q) := D(q∥pτ ) for q ∈ Q...

Q

pτ
optimizer in
all distributions

q∗
closest dist in Q
in KL-sense

...an approximate Bayesian solution.
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Why call it Bayesian?

Let ℓ(θ) =
∑N

i=1 ℓi(θ) +R(θ). Observe new data (xnew, ynew) with loss contribution ℓnew.

How to update pτ? Take τ = 1

Bayes’ rule is about conditional probabilities, and updating priors:

P (A|B) =
P (B|A)P (A)

P (B)

Interpret e−ℓi(θ) as the likelihood of observing label yi given the model parameter θ and xi.
Interpret π(θ) ∝ e−R(θ) as the prior on the parameters.

After one round of learning the posterior p ∝ e−
∑

i ℓiπ is our prior belief about θ distribution.
According to Bayes rule updated belief should be after a new data point.

pupdated(θ) ∝ e−ℓnew(θ)p(θ).

This is also the optimizer if we had initially considered the loss function ℓupdated = ℓ+ ℓnew.
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Exponential Families

Let T : Θ→ V , called the sufficient statistic. Call

Ω = Ων(T ) =

{
λ ∈ V ∨ : A(λ) := log

∫
Θ
e−⟨λ,T (θ)⟩dν(θ) <∞

}
.

Then qλ(θ) = e−⟨λ,T (θ)⟩−A(λ) form an exponential family of distributions.

− ∂A

∂λi
=

∫
Θ
Ti(θ)e

−⟨λ,T (θ)⟩−A(λ)dν(θ) = Eqλdν [Ti] =: µi

∂2A

∂λi∂λj
=

∫
Θ
(Ti(θ)− µi)(Tj(θ)− µj)qλ(θ)dν(θ)

= Eqλ

[(
∂

∂λi
log qλ

)(
∂

∂λj
log qλ

)]
=: Fi,j(λ) Fisher Matrix

Ω

V ∨

λ

Example: If T (θ) =
[

θ
θ2

]
then we get 1-D Gaussians qλ(θ) ∝ e−λ1θ−λ2θ2

for λ2 > 0.

Kıral Learning Distributions using Lie Groups August 2025 34 / 36



Exponential Families

Let T : Θ→ V , called the sufficient statistic. Call

Ω = Ων(T ) =

{
λ ∈ V ∨ : A(λ) := log

∫
Θ
e−⟨λ,T (θ)⟩dν(θ) <∞

}
.

Then qλ(θ) = e−⟨λ,T (θ)⟩−A(λ) form an exponential family of distributions.

− ∂A

∂λi
=

∫
Θ
Ti(θ)e

−⟨λ,T (θ)⟩−A(λ)dν(θ) = Eqλdν [Ti] =: µi

∂2A

∂λi∂λj
=

∫
Θ
(Ti(θ)− µi)(Tj(θ)− µj)qλ(θ)dν(θ)

= Eqλ

[(
∂

∂λi
log qλ

)(
∂

∂λj
log qλ

)]
=: Fi,j(λ) Fisher Matrix

Ω

V ∨

λ

Example: If T (θ) =
[

θ
θ2

]
then we get 1-D Gaussians qλ(θ) ∝ e−λ1θ−λ2θ2

for λ2 > 0.

Kıral Learning Distributions using Lie Groups August 2025 34 / 36



Exponential Families

Let T : Θ→ V , called the sufficient statistic. Call

Ω = Ων(T ) =

{
λ ∈ V ∨ : A(λ) := log

∫
Θ
e−⟨λ,T (θ)⟩dν(θ) <∞

}
.

Then qλ(θ) = e−⟨λ,T (θ)⟩−A(λ) form an exponential family of distributions.

− ∂A

∂λi
=

∫
Θ
Ti(θ)e

−⟨λ,T (θ)⟩−A(λ)dν(θ) = Eqλdν [Ti] =: µi

∂2A

∂λi∂λj
=

∫
Θ
(Ti(θ)− µi)(Tj(θ)− µj)qλ(θ)dν(θ)

= Eqλ

[(
∂

∂λi
log qλ

)(
∂

∂λj
log qλ

)]
=: Fi,j(λ) Fisher Matrix

Ω

V ∨

λ

Example: If T (θ) =
[

θ
θ2

]
then we get 1-D Gaussians qλ(θ) ∝ e−λ1θ−λ2θ2

for λ2 > 0.

Kıral Learning Distributions using Lie Groups August 2025 34 / 36



Harmonic exponential families (by Koichi Tojo & Taro Yoshino)

What about exponential families on Θ which are closed under a Lie group action?

Homogeneous space Θ ∼= G/H.

ν a relatively invariant base measure
dν(g · θ) = χ(g)dν(θ).

A finite dimensional representation
π : G→ GL(V ).

A 1-cocycle of π such that α
∣∣
H
≡ 0. So

α : G→ V satisfies

α(gh) = π(g)α(h) + α(g) = α(g).

Thus α : Θ→ V .

Let λ ∈ Ων(α) ⊆ V ∨ i.e.,
A(λ) = log

∫
Θ e−⟨λ,α(θ)⟩dν(θ) <∞.

qλ(θ)dν(θ) := e−⟨λ,α(θ)⟩−A(λ)dν(θ)

forms an exponential family closed under
pushforwards
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Linear Approximation of Lie group update is NGD on natural parameters

The Lie group rule is for transformation families. BLR is NGD on λ’s of exponential families.

The overlap is harmonic exponential families:

Pushforwards of qλ are still in the family,

(qλ)
g = qλ′ with λ′ = π∨(g)λ

Thus Q̃ = {λ ∈ Ω : λ = π∨(g)λ0, g ∈ G} and
updates are given by λupdated = π∨(gupdated)λ0.

Other quantities of qλ also vary with g:

µ(λ′) = π(g)λ+ α(g)

A(λ′) = A(λ) + log(χ(g)) + α(g−1)

Ω

V ∨

Q̃

λ0

π∨(g)λ0

V ∨

Q̃

λ0

λ

W F−1
λ ∇λE(qλ)

RY
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